Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin.
نویسندگان
چکیده
Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to examine the photoisomerization dynamics in the excited state of bacteriorhodopsin. Near-IR stimulated emission is observed in the FSRS probe window that decays with a 400-600-fs time constant. Additionally, dispersive vibrational lines appear at the locations of the ground-state vibrational frequencies and decay with a 260-fs time constant. The dispersive line shapes are caused by a nonlinear effect we term Raman initiated by nonlinear emission (RINE) that generates vibrational coherence on the ground-state surface. Theoretical expressions for the RINE line shapes are developed and used to fit the spectral and temporal evolution of the spectra. The rapid 260-fs decay of the RINE peak intensity, compared to the slower evolution of the stimulated emission, indicates that the excited-state population moves in approximately 260 fs to a region on the potential energy surface where the RINE signal is attenuated. This loss of RINE signal is best explained by structural evolution of the excited-state population along multiple low-frequency modes that carry the molecule out of the harmonic photochemically inactive Franck-Condon region and into the photochemically active geometry.
منابع مشابه
Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
The dispersive lines observed in time-resolved femtosecond stimulated Raman spectroscopy (FSRS), using a pair of 809 nm, 3 ps Raman pump, and 840-960 nm ultrashort probe pulse, for the first 500 fs photoisomerization dynamics in the excited state of bacteriorhodopsin, BR* (S(1)), created by a prior 500 nm, 35 fs actinic pump pulse, have previously been attributed to Raman initiated by nonlinear...
متن کاملFemtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex.
Vibrational dynamics of the excited state in the light-harvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The ν(1) (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S(1) excited state with a time constant of 0.3 ps. It is assigned...
متن کاملUltrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy
The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is...
متن کاملFemtosecond time-resolved fluorescence spectroscopy of bacteriorhodopsin: Direct observation of excited state dynamics in the primary step of the proton pump cycle
A femtosecond fluorescence upconversion apparatus was used to measure the fluorescence decays in bacteriorhodopsin from Halobacterium hnlobium. The isotropic fluorescence measurements reveal a weak emission wavelength dependence from 680 nm to 900 nm (which spans most of the steady state fluorescence spectrum). The decays can be well fitted as a sum of three exponential decay components with ti...
متن کاملExcited-State Proton Transfer of Photoexcited Pyranine in Water Observed by Femtosecond Stimulated Raman Spectroscopy
We use femtosecond stimulated Raman spectroscopy (FSRS) to illuminate the choreography of intermolecular excited-state proton transfer (ESPT) of photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) in water. The multidimensional reaction coordinate responsible for photoacidity is revealed to involve sequential activation of characteristic skeletal motions during the ca. 1 ps prepar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 20 شماره
صفحات -
تاریخ انتشار 2005